Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Prep Biochem Biotechnol ; 54(1): 1-11, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37071540

RESUMO

This study describes the production, characterization and application of an endoglucanase from Penicillium roqueforti using lignocellulosic agro-industrial wastes as the substrate during solid-state fermentation. The endoglucanase was generated after culturing with different agro-industrial wastes for 96 h without any pretreatment. The highest activity was obtained at 50 °C and pH 4.0. Additionally, the enzyme showed stability in the temperature and pH ranges of 40-80 °C and 4.0-5.0, respectively. The addition of Ca2+, Zn2+, Mg2+, and Cu2+ increased enzymatic activity. Halotolerance as a characteristic of the enzyme was confirmed when its activity increased by 35% on addition of 2 M NaCl. The endoglucanase saccharified sugarcane bagasse, coconut shell, wheat bran, cocoa fruit shell, and cocoa seed husk. The Box-Behnken design was employed to optimize fermentable sugar production by evaluating the following parameters: time, substrate, and enzyme concentration. Under ideal conditions, 253.19 mg/g of fermentable sugars were obtained following the saccharification of wheat bran, which is 41.5 times higher than that obtained without optimizing. This study presents a thermostable, halotolerant endoglucanase that is resistant to metal ions and organic solvents with the potential to be applied in producing fermentable sugars for manufacturing biofuels from agro-industrial wastes.


Assuntos
Celulase , Saccharum , Celulase/química , Celulose , Fibras na Dieta , Fermentação , Resíduos Industriais , Projetos de Pesquisa , Saccharum/metabolismo , Açúcares , Cálcio/química , Cobre/química , Zinco/química , Magnésio/química
2.
Prep Biochem Biotechnol ; : 1-8, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38156982

RESUMO

Proteases are the main enzymes traded worldwide-comprising 60% of the total enzyme market-and are fundamental to the degradation and processing of proteins and peptides. Due to their high commercial demand and biological importance, there is a search for alternative sources of these enzymes. Crotalaria stipularia is highlighted for its agroecological applications, including organic fertilizers, nematode combat, and revegetation of areas contaminated with toxic substances. Considering the pronounced biotechnological functionality of the studied species and the necessity to discover alternative sources of proteases, we investigated the extraction, purification, and characterization of a protease from seeds of the C. stipularia plant. Protease isolation was achieved by three-phase partitioning and single-step molecular exclusion chromatography in Sephacryl S-100, with a final recovery of 47% of tryptic activity. The molecular mass of the isolated enzyme was 40 kDa, demonstrating optimal activities at pH 8.0 and 50 °C. Enzymatic characterization demonstrated that the protease can hydrolyze the specific trypsin substrate, BApNA. This trypsin-like protease had a Km, Vmax, Kcat, and catalytic efficiency constant of 0.01775 mg/mL, 0.1082 mM/min, 3.86 s-1, and 217.46, respectively.

3.
Biotechnol Appl Biochem ; 70(1): 184-192, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35338782

RESUMO

The enormous amount of agroindustrial residues generated in Brazil can be used as biomass to produce fermentable sugars. This study compared the pretreatments with different proportions of dilute acid. The method involved pretreatment with 0.5%, 1%, and 1.5% (v/v) sulfuric acid, followed by hydrolysis using the halotolerant and thermostable endoglucanase from Botrytis ricini URM 5627. The physicochemical characterization of plant biomass was performed using XRD, FTIR, and SEM. The pretreatment significantly increased the production of fermentable sugars following enzymatic saccharification from wheat bran, sugarcane bagasse, and rice husk: 153.67%, 91.98%, and 253.21% increment in sugar production; 36.39 mg⋅g-1 ± 1.23, 39.55 mg⋅g-1 ± 1.70, and 42.53 mg⋅g-1 ± 7.61 mg⋅L-1 of glucose; and 3.26 ± 0.35 mg⋅g-1 , 3.61mg⋅g-1 ± 0.74 and 3.59 mg⋅g-1 ± 0.80 of fructose were produced, respectively. In conclusion, biomass should preferably be pretreated before the enzymatic saccharification using B. ricini URM 5627 endoglucanase.


Assuntos
Celulase , Saccharum , Celulose/metabolismo , Celulase/metabolismo , Fermentação , Saccharum/metabolismo , Glucose , Hidrólise
4.
Biotechnol Appl Biochem ; 69(5): 2069-2080, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34617635

RESUMO

The increased demand for cheese and the limited availability of calf rennet justifies the search for milk-clotting enzymes from alternative sources. Trypsin-like protease by Penicillium roqueforti was produced by solid-state fermentation using cocoa shell waste as substrate. The production of a crude enzyme extract that is rich in this enzyme was optimized using a Doehlert-type multivariate experimental design. The biochemical characterization showed that the enzyme has excellent activity and stability at alkaline pH (10-12) and an optimum temperature of 80°C, being stable at temperatures above 60°C. Enzymatic activity was maximized in the presence of Na+ (192%), Co2+ (187%), methanol (153%), ethanol (141%), and hexane (128%). Considering the biochemical characteristics obtained and the milk coagulation activity, trypsin-like protease can be applied in the food industry, such as in milk clotting and in the fabrication of cheeses.


Assuntos
Queijo , Leite , Animais , Fermentação , Tripsina , Concentração de Íons de Hidrogênio
5.
Bioresour Technol ; 270: 263-269, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30223157

RESUMO

A halotolerant endoglucanase with a molecular mass of 39 kDa was obtained from the solid fermentation of sugarcane bagasse by the fungus Botrytis ricini URM 5627 and isolated using only two purification processes: fractionation with ammonium sulphate and size-exclusion chromatography resulting in an activity of 1289.83 U/mL. After the isolation, biochemical characterizations were performed, giving a temperature of 50 °C and optimum pH of 5. The enzyme was stable at 39-60 °C for 60 min and at a pH of 4-6. The enzymatic activity increased in the presence of Na+, Mn2+, Mg2+ and Zn2+ and decreased in the presence of Ca2+, Cu2+, and Fe2+. The endoglucanase revealed a halotolerant profile since its activity increased proportionally to an increase in NaCl concentration. The maximum activity was reached at 2 M NaCl with a 75% increase in activity. The enzyme had a Km of 0.1299 ±â€¯0.0096 mg/mL and a Vmax of 0.097 ±â€¯0.00121 mol/min/mL. During application in saccharification tests, the enzyme was able to hydrolyse sugarcane bagasse, rice husk, and wheat bran, with the highest production of reducers/fermentable sugars within 24 h of saccharification for wheat bran (137.21 mg/g). Therefore, these properties combined make this isolated enzyme a potential candidate for biotechnological and industrial applications.


Assuntos
Botrytis/enzimologia , Celulase/metabolismo , Fibras na Dieta , Estabilidade Enzimática , Fermentação , Concentração de Íons de Hidrogênio , Hidrólise , Saccharum/metabolismo , Temperatura
6.
Int J Biol Macromol ; 119: 517-523, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30067955

RESUMO

Genipa americana L., commonly known as genipap, is a plant with economical and medicinal importance, and a promising source of bioactive compounds. Lectins are carbohydrate-binding proteins with several biotechnological applications. This study reports the isolation and characterization of a G. americana bark lectin (GaBL). A single chromatographic procedure on Sephacryl S-100 resulted in isolation of GaBL, a protein with native molecular weight of over 200 kDa and pI 4.02, whose hemagglutinating activity was inhibited by lactose and fetuin, not affected by ions (Ca2+ and Mg2+), and stable upon heating (303-393 K) as well as over the pH range 5-10. The highest activity was found at a temperature lower than 333 K and pH 5. The secondary structure was analyzed by circular dichroism and showed a prevalence of beta structures and unordered forms. GaBL was able to partially refold in acidic pH conditions when dissolved in PBS buffer at pH 7.4. In conclusion, GaBL was purified in milligram quantities with high stability against different conditions, and is a new biomaterial with potential biotechnological applications.


Assuntos
Casca de Planta/química , Lectinas de Plantas/química , Lectinas de Plantas/isolamento & purificação , Redobramento de Proteína , Rubiaceae/química
7.
Toxicon ; 131: 63-67, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28284848

RESUMO

Animal venoms are multifaceted mixtures, including proteins, peptides and enzymes produced by animals in defense, predation and digestion. These molecules have been investigated concerning their molecular mechanisms associated and possible pharmacological applications. Thalassophryne nattereri is a small venomous fish inhabiting the northern and northeastern coast of Brazil, and represents a relatively frequent cause of injuries. Its venom causes severe inflammatory response followed frequently by the necrosis of the affected area. Scorpaena plumieri is the most venomous fish in the Brazilian fauna and is responsible for relatively frequent accidents involving anglers and bathers. In humans, its venom causes edema, erythema, ecchymoses, nausea, vomiting, and syncope. Recently, the presence of a type of angiotensin converting enzyme (ACE) activity in the venom of Thalassophryne nattereri and Scorpaena plumieri, endemic fishes in northeastern coast of Brazil, has been described. The ACE converts angiotensin I (Ang I) into angiotensin II (Ang II) and inactivates bradykinin, there by regulating blood pressure and electrolyte homeostasis, however, their function in these venoms remains an unknown. This article provides an overview of the current knowledge on ACE in the venoms of Thalassophryne nattereri and Scorpaena plumier.


Assuntos
Venenos de Peixe/farmacologia , Peptidil Dipeptidase A/farmacologia , Angiotensina I/metabolismo , Angiotensina II/metabolismo , Animais , Batracoidiformes , Pressão Sanguínea/efeitos dos fármacos , Bradicinina/antagonistas & inibidores , Bradicinina/metabolismo , Brasil , Homeostase/efeitos dos fármacos , Peptidil Dipeptidase A/isolamento & purificação
8.
Int J Biol Macromol ; 91: 980-6, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27327905

RESUMO

Animal venoms are complex mixtures, including peptides, proteins (i.e., enzymes), and other compounds produced by animals in predation, digestion, and defense. These molecules have been investigated regarding their molecular mechanisms associated with physiological action and possible pharmacological applications. Recently, we have described the presence of a type of angiotensin converting enzyme (ACE) activity in the venom of Thalassophryne nattereri. It is a zinc-dependent peptidase with a wide range of effects. By removing dipeptide His-Leu from terminal C, the ACE converts angiotensinI (AngI) into angiotensin II (AngII) and inactivates bradykinin, there by regulating blood pressure and electrolyte homeostasis. The fractionation of T. nattereri venom in CM-Sepharose indicated a peak (CM2) with angiotensin-converting activity, converting AngI into Ang II. Electrophoresis on polyacrylamide gel (12%) revealed one band with 30kDa for CM2 similar in size to natterins, which are toxins with proteolytic activity found in T. nattereri venom. Mass spectrometry indicated that the protein sequence of the ACE purified from T. nattereri venom corresponds to natterin 1. The isolated protein has also demonstrated inhibition through captopril and EDTA and is characterized as a classic ACE. Thus, the isolated enzyme purified from T. nattereri venom is the first ACE isolated from fish venom.


Assuntos
Batracoidiformes/metabolismo , Venenos de Peixe/enzimologia , Peptidil Dipeptidase A/metabolismo , Sequência de Aminoácidos , Animais , Cátions , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica , Eletroforese em Gel de Poliacrilamida , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/isolamento & purificação , Alinhamento de Sequência
9.
Toxicon ; 98: 49-53, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25702959

RESUMO

The venom of marine animals is a rich source of compounds with remarkable functional specificity and diversity. Thalassophryne nattereri is a small venomous fish inhabiting the northern and northeastern coast of Brazil, and represents a relatively frequent cause of injuries. Its venom causes severe inflammatory response followed frequently by the necrosis of the affected area. This venom presents characterized components such as proteases (Natterins 1-4) and a lectin (Nattectin) with complex effects on the human organism. A specific inhibitor of tissue kallikrein (TKI) reduces the nociception and the edema caused by the venom in mice. Our study sought to investigate the proteolytic activities against vasopeptides Angiotensin I, Angiotensin II, Angiotensin 1-9 and Bradykinin. The venom indicated angiotensin conversion against angiotensin I, as well as kininase against bradykinin. Captopril conducted the total inhibition of the converting activity, featuring the first report of ACE activity in fish venoms.


Assuntos
Angiotensinas/antagonistas & inibidores , Batracoidiformes , Venenos de Peixe/química , Peixes Venenosos , Angiotensina I/antagonistas & inibidores , Angiotensina I/metabolismo , Angiotensina II/metabolismo , Angiotensinas/metabolismo , Animais , Bradicinina/antagonistas & inibidores , Bradicinina/metabolismo , Brasil , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Camundongos
10.
J Chromatogr B Analyt Technol Biomed Life Sci ; 877(22): 2039-44, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19515617

RESUMO

Sunflower trypsin inhibitor-1 (SFTI-1), a natural 14-residue cyclic peptide, and some of its synthetic acyclic variants are potent protease inhibitors displaying peculiar inhibitory profiles. Here we describe the synthesis and use of affinity sorbents prepared by coupling SFTI-1 analogues to agarose resin. Chymotrypsin- and trypsin-like proteases could then be selectively isolated from pancreatin; similarly, other proteases were obtained from distinct biological sources. The binding capacity of [Lys5]-SFTI-1-agarose for trypsin was estimated at over 10 mg/mL of packed gel. SFTI-1-based resins could find application either to improve the performance of current purification protocols or as novel protease-discovery tools in different areas of biological investigation.


Assuntos
Cromatografia de Afinidade/métodos , Helianthus/química , Peptídeos Cíclicos/química , Proteínas de Plantas/química , Serina Endopeptidases/isolamento & purificação , Inibidores da Tripsina/química , Animais , Cromatografia de Afinidade/instrumentação , Pancreatina/química , Ligação Proteica , Resinas Sintéticas/química , Serina Endopeptidases/química , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...